Tree Canopy Height Change 2014 to 2019

A tree crowns layer was derived from 2018 NAIP and 2019 LiDAR, and then each tree crown polygon was populated with the 95th percentile nDSM (height above ground) values from LiDAR collected in 2014 and in 2019. Object-based image analysis techniques (OBIA) were employed to extract potential tree crowns including the area of the crown and trees using the best available remotely sensed and vector GIS datasets. OBIA systems work by grouping pixels into meaningful objects based on their spectral and spatial properties, while taking into account boundaries imposed by existing vector datasets. Within the OBIA environment a rule-based expert system was designed to effectively mimic the process of manual image analysis by incorporating the elements of image interpretation (color/tone, texture, pattern, location, size, and shape) into the classification process. A series of morphological procedures were employed to insure that the end product is both accurate and cartographically pleasing. Following the automated OBIA mapping a detailed manual review of the dataset was carried out at a scale of 1:2000 and all observable errors were corrected.

Data and Resources

Tags

Additional Info

Title Tree Canopy Height Change 2014 to 2019
Type Geospatial
Description

A tree crowns layer was derived from 2018 NAIP and 2019 LiDAR, and then each tree crown polygon was populated with the 95th percentile nDSM (height above ground) values from LiDAR collected in 2014 and in 2019. Object-based image analysis techniques (OBIA) were employed to extract potential tree crowns including the area of the crown and trees using the best available remotely sensed and vector GIS datasets. OBIA systems work by grouping pixels into meaningful objects based on their spectral and spatial properties, while taking into account boundaries imposed by existing vector datasets. Within the OBIA environment a rule-based expert system was designed to effectively mimic the process of manual image analysis by incorporating the elements of image interpretation (color/tone, texture, pattern, location, size, and shape) into the classification process. A series of morphological procedures were employed to insure that the end product is both accurate and cartographically pleasing. Following the automated OBIA mapping a detailed manual review of the dataset was carried out at a scale of 1:2000 and all observable errors were corrected.

Released 2024-01-19
Modified 2024-05-20
Publisher Boston Maps
Classification Public Record
Open Yes
Contact point Analytics Team
Contact point email [email protected]
Landing page https://bostonopendata-boston.opendata.arcgis.com/maps/boston::tree-canopy-height-change-2014-to-2019
License Open Data Commons Public Domain Dedication and License (PDDL)